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The canonical equilibrium measure of classical two-component Coulomb matter 
with regularized interactions is analyzed in a finite volume. It is shown that, in 
the mean-field regime, the one-particle density is inhomogeneous on a new 
characteristic length scale )0~nh. For a system of N positive and N negative 
particles, 2~n h and the characteristic length scale of correlations )-cof~ (=Debye  
screening length) are related via 2in~ = (2N) 1/2 ~'corr' The major conceptual con- 
clusion that is drawn from this is that one needs two nontrivial complementary 
thermodynamic limits to define the equilibrium thermodynamics of two-compo- 
nent Coulomb systems, One of them is the standard thermodynamic limit 
(infinite volume), where one takes N ~ 0% 2 .... fixed. Its complementary limit 
is characterized by N--* o% 21n h fixed, and is a finite-volume inhomogeneous 
mean-field limit. The most prominent new feature in the mean-field ther- 
modynamic limit, which is absent in the standard thermodynamic limit, is an 
anomalous first-order phase transition where the Coulomb system explodes or 
implodes, respectively. The phase transition is connected with the existence of a 
metastable plasma phase far below the ionization temperature. 

KEY WORDS: Coulomb systems; classical point particles; canonical ensem- 
ble; equilibrium states; complementary thermodynamic limits; first-order phase 
transition. 

1. I N T R O D U C T I O N  

Given certain stability conditions on the Hamiltonian of a system, the limit 
of (average) particle number N ~  0% volume IAI ~ o% N/IA[ =n fixed, 
exists for the Gibbs equilibrium measures and the average quantities like 
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energy density, pressure, etc. This limiting sequence is well known as the 
standard thermodynamic limit. It is one of the most important concepts of 
equilibrium statistical mechanics. See, e.g., refs. 1 and 2 for its construction 
for Hamiltonians with stable short-range forces, and refs. 3-5 for the multi- 
component Coulomb problem, both classical and quantum mechanical. 
It has served as a principal working hypothesis that the equilibrium 
thermodynamics of a physical system had to be defined in terms of its 
equilibrium statistical mechanics in the standard thermodynamic limit. 11'2) 
That standpoint seems natural if one observes its impressive successes in 
explaining the thermodynamics of matter of ordinary size and in states we 
experience typically in our everyday lives. Defining thermodynamics on the 
basis of the standard thermodynamic limit implies, however, that all 
systems for which the standard thermodynamic limit does not exist are 
ruled out from thermodynamics. This applies essentially to systems with 
unstable interactions, examples of which are systems of cosmic size with 
dominant gravitational interactions and the many-electron atom, a one- 
component Coulomb system in the field of a localized external charge dis- 
tribution. Until recently it was in fact a widespread belief that there is no 
thermodynamics for these systems, although approaches to apply ther- 
modynamic ideas to gravitating systems, for example, go back at least as 
far as Lord Kelvin, (6) and were extensively discussed, for instance, in ref. 7 
and 8. In recent years, the picture has somewhat changed, mainly because 
it was recognized that the asymptotic behavior as N becomes large of both 
the Gibbs equilibrium measures (the states) and the thermodynamic 
functions of systems with unstable interactions can appropriately be 
investigated in terms of what has become known as an inhomogeneous 
mean-field thermodynamic limit. See refs. 9-14 for this limit for fermions 
with either gravostatic or a mixture of both gravo- and electrostatic inter- 
actions, and ref. 15 for electrons in the field of infinitely massive nuclei. 
References 16 and 17 give comprehensive overviews over the basic methods 
and results of this so called "temperature-dependent Thomas-Fermi limit." 
One might also be interested in the corresponding ground-state 
problem. ~18'19) Furthermore, ref. 20 deals with more general, unstable one- 
component quantum Hamiltonians, with special emphasis on spin systems. 
A classical mean-field limit of the canonical ensemble of one-component 
systems with fairly general unstable interactions was established in ref. 21, 
and thouroughly discussed for regularized Newton interactions (including 
the limiting case of exact Newton interactions) in ref. 22. As is the case 
in the standard thermodynamic limit, the equilibrium measures in an 
inhomogeneous mean-field thermodynamic limit are determined by the 
global minima of a suitable thermodynamic potential. It seems therefore 
natural to interpret the results derived from the inhomogeneous mean-field 
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thermodynamic limit as pertaining to the equilibrium thermodynamics of 
the systems with unstable pair interactions. Precisely that has actually been 
done in the cited literature, and the present article is based on this 
standpoint as well. 

The above discussion seems to point to the conclusion that the 
standard thermodynamic limit and the inhomogeneous mean-field ther- 
modynamic limit would divide physical systems into two classes, each class 
associated with its own type of thermodynamic limit which defines the ther- 
modynamics of the system under consideration. However, the aim of this 
and a subsequent paper is to show that there exist physically important 
systems for which both the standard and the inhomogeneous mean-field 
thermodynamic limits can be constructed as nontrivial limits. In such a 
case both limits are incompatible; they describe complementary asymptotic 
(as N ~  ~ )  properties of the same large but finite system. In other words, 
both limits can be regarded as forming a pair of nontrivial complementary 
thermodynamic limits for one and the same system. 

In particular, such a situation occurs for classical two-component 
Coulomb systems with regularized interactions. The standard ther- 
modynamic limit for these systems was constructed in ref. 3 for the ther- 
modynamic functions and in ref. 4 for the measures as well. As will be 
shown here and in a forthcoming paper, ~23) there also exists a nontrivial 
inhomogeneous mean-field thermodynamic limit. It is interesting in itself to 
mention that the equations of the mean-field limit of two-component 
Coulomb matter are formally identical to the mean-field equations of 
classical one-component Newton matter with regularized interactions. ~21'22~ 
In fact, there is a natural analogy between Coulomb and Newton systems 
in the many-body case, which will play a central role in the considerations 
given below. Clearly, some typical bulk properties of the Coulomb system 
obtained from its inhomogeneous mean-field thermodynamic limit cannot 
be obtained from its standard thermodynamic limit, and vice versa. In this 
sense, for two-component Coulomb matter the inhomogeneous mean-field 
thermodynamic limit is a nontrivial complementary thermodynamic limit 
with respect to the standard one, and vice versa. 

The most prominent new feature which we shall find in the new mean- 
field thermodynamic limit is a first-order phase transition describing an 
explosion or implosion, respectively, of the Coulomb system. This result is 
particularly interesting in view of a "no-phase-transition theorem" which 
has been stated ~4~ for the standard thermodynamic limit of the here- 
considered Coulomb systems with regularized interactions. 

The main aim of the present paper is to introduce the new concept 
of complementary thermodynamic limits for classical two-component 
Coulomb matter, with special emphasis on the discussion of the properties 
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of the new mean-field thermodynamic limit and its possible implications 
for physical matter. The equations which determine the mean-field ther- 
modynamic limit will be stated without proof. Only the basic ideas of the 
proof are presented, as well as some nonrigorous but intuitive plausibility 
reasoning. The technical aspects of the rigorous proof will be dealt with in 
a subsequent article. ~23) 

It remains to outline the structure of this paper. The next section con- 
tains some plausibility arguments on why it is natural to look for nontrivial 
complementary thermodynamic limits at all, and especially why classical 
Coulomb matter is a promising candidate for finding them. In Section 3 it 
is shown that to the mean-field regime of Coulomb matter there pertains 
a so far unknown length scale which is incompatible with the Debye scale. 
This scale is derived (i) by means of an analogy between classical Newton 
and Coulomb gases and (ii) by means of a variational principle which 
governs the isothermal equilibrium of finite classical systems with smooth 
long-range forces in the mean-field approximation. The variational principle 
is applied to classical Newton and Coulomb systems, both with regularized 
interactions, and it is shown that formally the results coincide. Section 4 
anticipates that the new length scale has associated with it a limit where 
N ~  oe, which preserves this scale. It will be claimed that this limit is a 
nontrivial complementary thermodynamic limit (with respect to the 
standard one) for two-component Coulomb systems. We find that the set 
of equations derived in Section 3 already describes the Coulomb bulk 
properties in the new limit, which confirms that it is in fact a ther- 
modynamic mean-field limit. The properties of Coulomb matter in the new 
limit are discussed in Section 5, emphasizing the possible implications for 
physical matter. Concluding remarks are given in Section 6. 

2. C H A R A C T E R I S T I C  SCALES A N D  
T H E R M O D Y N A M I C  L IMITS 

Once one accepts that there is some type of thermodynamic behavior 
also for systems with unstable interactions, which may be described (or 
defined) in terms of an inhomogeneous mean-field thermodynamic limit, 
with a view toward unification of the notions of equilibrium ther- 
modynamics of systems with stable and with unstable interactions, it is 
desirable to have an approach that treats the various thermodynamic limits 
on an equal footing. To achieve this, one has to look for some charac- 
teristic many-body features of physical systems which, to some extent, do 
not depend on whether one has stable or unstable interactions, and which 
can be used to characterize a thermodynamic limit. 

The key notion that might help us in our efforts is that of charac- 
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teristic bulk length scales. These scales measure typical many-body struc- 
tures which emerge as the result of the simultaneous interaction of a large 
number of particles. More importantly, it seems that each of the known 
thermodynamic limits for nontrivial systems has naturally associated with 
it a characteristic structural length scale "~typ which plays the role of a 
characteristic invariant as N ~  oo. [The trivial case of the perfect gas (no 
interactions) will not be considered here explicitly.] 

The structures which are measured by some scale 2typ can occur in the 
one-particle density or in the (higher) correlation functions, or in both. For  
the systems for which the standard thermodynamic limit (infinite volume) 
exists, the characteristic bulk scale which is an invariant for that limit is 
typically a characteristic scale of the two- or more-particle correlation func- 
tions. In particular, if the state in the standard thermodynamic limit is a 
homogeneous system, e.g., a gas, then it has no structure in the one-particle 
density, and some correlation scale is the only characteristic invariant scale 
of the standard thermodynamic limit. The equilibrium state might, 
however, be an infinite crystal. One or several crystal-lattice spacing(s) 
might then be considered as characteristic invariant(s) as well. In any case, 
the existence of the typical scales allows one to characterize the standard 
thermodynamic limit alternatively as the limit N ~  oo of the properly 
normalized Gibbs measures which keeps certain typical scales 2typ fixed, 
such that mean quantities such as energy per particle, entropy per particle, 
etc., have well-defined limits almost everywhere. 

An analogous characterization can be given for systems with unstable 
interactions. A typical many-body feature of systems with unstable inter- 
actions is generally a large-scale inhomogeneity in the one-particle density. 
Let us pick the particular example of an isothermal self-gravitating gas, 
which will also play a central role in the considerations in the next sections. 
The characteristic inhomogeneity length scale ~(~ for a self-gravitating gas r~in h 

is known as the Jeans length. (24'25) For  a finite isothermal system of N~ 
gravitating particles in a hollow sphere of radius R it reads 

) o ( ~ )  - -  [ - k  B T R 3 / 3 ( N ~  - 1 ) G m  2 ] l /2 (2.1) inh - -  

where k B is Boltzmann's constant, G is Newton's constant, T is the tem- 
perature, and m is the mass of a particle. The inhomogeneous mean-field 
thermodynamic limit for a self-gravitating gas, consisting either of quantum 
particles with Fermi statistics or of classical particles with regularized inter- 
actions, can in fact be characterized as the limit N~ ~ oo of the Gibbs 
probability measures which keeps ~/~) fixed, such that the energy per "~lnh 

particle, etc., has a limit almost everywhere. 
It should be noted that the requirement that the mean quantities exist 

is crucial. The requirement N~ ~ ~ with ~ ~r fixed alone does not rule / ~ m h  
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out the formal standard thermodynamic-limit sequence N~--* o% R3~ 
i A]--.o% N~/lAl=n (more precisely: ( N ~ - I ) / I A I = n  fixed). But this 
sequence gives no thermodynamically meaningful limit because the exten- 
sivity of the energy, etc., does not hold for systems with gravitational inter- 
actions. Recall that in a given volume the classical ground-state energy 
(= minimum of the potential energy of systems with regularized interac- 
tions) diverges to minus infinity proportional to - N  2. This means that 
doubling the system does not imply doubling the energy. Similarly, the 
quantum mechanical ground-state energy for fermions with exact Newton 
interactions (26) goes like - - N  7/3. The thermodynamically relevant limit 

~(e) fixed may be performed in a fixed volume, which for the N~ ~ ~ ,  "~inh 
measures implies that either the temperature has to be scaled like 
T,,~ (N~ - 1) To, with T O fixed, or the two-particle coupling constant Gm 2 
has to be scaled ~ ( N ~ -  1) l[Gm2]o. For details see, e.g., refs. 21 and 22 
for the classical systems and refs. 9-17 for the quantum case. It turns out 
that this scaling of the coupling constant keeps the total (negative) potential 
energy extensive, i.e., formally proportional to the particle number N. For 
classical systems this is already sufficient for quantities such as the mean 
potential energy, etc., to exist, because of the decoupling of the momentum 
and configurational space contributions. So the mean-field thermodynamic 
limit for classical self-gravitating matter can be defined as the finite-volume 
limit N~ ~ ~ of the Gibbs probability measure in configurational space, 
which keeps ~(~r fixed. In the quantum case an additional scaling is "~inh 

required for the kinetic energy term. For details see, e.g., refs. 16 and 17. 
Besides providing us with the possibility of treating the standard and 

the inhomogeneous mean-field thermodynamic limit on an equal footing, 
the characterization of thermodynamic limits by means of their typical 
length scales has an interesting conceptual spinoff. It is in fact only a small 
step to come to the conclusion that one should look for systems for which 
equilibrium thermodynamics may be defined (at least) in terms of a pair of 
nontrivial complementary thermodynamic limits. Such a situation would 
occur if the typica!, structural length scales of the various marginal 
measures of the Gibbs measure of a finite system would have different N 
dependences, such that not all length scales could be kept fixed 
simultaneously along a sequence N ~ ~ .  Such length scales will be called 
"incompatible." This presents us with the following interesting question: Is 
it possible at all that a physically meaningful system exists which has at 
least two incompatible characteristic bulk scales, such that both the ther- 
modynamic limit and perhaps a kind of inhomogeneous mean-field ther- 
modynamic limit exist as nontrivial limits? In that case it would be natural 
to consider both limits as representing complementary thermodynamic 
bulk properties of the system. 



Thermodynamic Limit for Coulomb M a t t e r  1163 

What we need is a system which as minimum requirement combines 
the following two properties: (1) The interactions must be stable, which is 
a sine qua non for the existence of a nontrivial thermodynamic limit (1) in 
the usual sense; and (2)the interactions must also be sufficiently long 
range, as sine qua non for a nontrivial kind of thermodynamic mean-field 
behavior. 

Classical Coulomb systems with regularized interactions fulfill both 
these requirements. Recall that the overall neutrality and the regularization 
of the interactions guarantee the stability of the classical Coulomb 
system. (27'28) (Stability also holds in the quantum mechanical case with 
exact Coulomb interactions if all, or at least all negative particles, are 
fermions. (29'3~ So the first of our above requirements is fulfilled. The inter- 
actions are clearly long range; hence the second requirement holds, too. 

The situation with these systems is even more promising. As we 
already know, the standard thermodynamic limit exists. The proof, both 
for classical systems with regularized interactions and for fermions, was 
given in ref. 3 for the thermodynamic functions (see also ref. 31 for a 
review), and in ref. 4 for all the correlation functions and the observables 
in the grand canonical ensemble. The standard thermodynamic limit for 
Coulomb matter is also nontrivial in the physical sense because it has 
associated with it a characteristic bulk scale which is kept fixed along the 
standard thermodynamic-limit sequence. This scale is the well-known 
Debye length, which for a two-species Coulomb system reads 

(e) _ ( e o k  B (2.2) "~  . . . .  - -  Tin#q2) I/2 

where eo is the vacuum permittivity, q is the absolute value of the electric 
charge carried by each particle, and n e  is the total average particle density. 
The Debye length is a measure for the range of the equilibrium correlations 
in electrolytes ~32'33~ and in a plasma, (34) which cluster exponentially with 
the Debye length as characteristic scale (for a rigorous proof see ref. 35). 
To see whether, in addition to the standard one, there might also exist a 
nontrivial complementary thermodynamic limit we have now first of all to 
investigate whether the long-range character of the Coulomb interactions 
gives rise to some nontrivial mean-field behavior that has associated with 
it another bulk scale which is incompatible with the Debye scale. 

3. A NEW LENGTH SCALE FOR COULOMB GASES 

3.1. Heuristic Estimation 

A systematic search for another bulk length scale in two-component 
Coulomb gases requires investigating finite systems. Clearly, it makes no 
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sense to investigate a system in its standard thermodynamic limit, hoping 
to find a length scale which is incompatible with that limit. So the problem 
has to be handled with some care, since in a finite system there can exist 
many different characteristic lengths which are caused by the interactions 
of the particles with the confining walls of the container. Most of them, 
however, will be of no thermodynamic relevance for the bulk system. For 
instance, that will be the case if only a small group of particles is involved 
instead of all particles, which form the bulk system. The problem is 
to find out whether there exists a bulk scale in two-component Coulomb 
systems distinct from the length scale of the correlations. A comparison 
with the behavior of self-gravitating matter will help us in our efforts. 
Since the Jeans length measures a large-scale inhomogeneity of gaseous 
self-gravitating matter in the mean-field regime, and since this regime is 
caused by the long-range character of the Newtonian gravity force and not 
by its unstable character, we should not be surprised to find a similar 
large-scale inhomogeneity in the one-particle density for a finite Coulomb 
plasma. 

Remark. At first glance it may seem that the last claim runs counter 
to common textbook knowledge; however, a detailed examination of what 
is usually stated in textbooks reveals that it does not. In the literature one 
usually finds the statement that in thermal equilibrium a plasma is 
homogeneous, (34"36'3v) but some place in the quoted textbooks it is always 
explicitly postulated that the thermal equilibrium is defined by the standard 
thermodynamic limit, a then natural assumption. In this infinite-volume 
limit a plasma is in fact homogeneous (in the absence of any external 
charge distribution), but this is not in conflict with the reasoning given 
here. The goal here is to see whether it is appropriate to define the ther- 
modynamics of two-component Coulomb matter merely in terms of the 
standard thermodynamic limit or whether a nontrivial complementary limit 
might be needed. 

The following, nonrigorous argument will show that it is indeed likely 
that there exists a (however, tiny) large-scale inhomogeneity of classical 
gaseous Coulomb matter in a finite volume. It will also yield a first 
estimate for the scale itself. (We shall see below that this estimate is even 
exact!) As pointed out above, the argument makes use of a very close rela- 
tionship between systems with (regularized) gravostatic interactions and 
overall neutral systems with (regularized) electrostatic interactions. Hence, 
let us consider both a self-gravitating system with N~ particles and an over- 
all neutral two-component plasma with Ng positive and N~ negative par- 
ticles. Each system is confined to a spherical domain of radius R and in 
thermal equilibrium of temperature T. A nontrivial mean-field behavior can 
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be found by estimating the behavior of both systems under the assumption 
that correlations can be neglected. This leads to the following picture. In 
the self-gravitating system each particle will be attracted by all N ~ -  ! 
remaining particles. That means that the average gravitational force acting 
on a particle seems to come from a spherically smeared-out distribution of 
matter of total mass equal to N ~ - 1  times the mass of a single particle. 
For symmetry reasons this resulting average force is directed toward the 
sphere's center. In equilibrium it is counterbalanced by a thermal pressure 
gradient which is associated with the large-scale inhomogeneity that lives 
on the Jeans length scale. In the Coulomb system, on the other hand, there 
are Are attractive and N 6  - 1 repulsive forces acting on each particle of the 
system, such that on the average every particle sees the remaining system 
as if it were only a singly, oppositely charged fluid. Because of the spherical 
symmetry of the problem the resulting average attractive force again is 
directed toward the sphere's center. To balance this resulting average force 
a pressure gradient is required. This is equivalent to having a large-scale 
inhomogeneity. Since both the regularized electrostatic and gravostatic 
forces are essentially 1/r 2 forces, at least their relevant long-range part, it is 
plausible that qualitatively the two inhomogeneities will look alike. We can 
thus guess the scale of the inhomogeneity in Coulomb matter by replacing 
the gravitational "many-particle coupling constant" (N~ - 1) Gm 2 in (2.t) 
by q2/4~Zeo. That way we get 

2 (6)  _ (eo kB T4~tR3/3q 2) 1/2 
i n h  - -  , (3.1) 

as a first guess for the inhomogeneity scale in classical gaseous Coulomb 
matter. Essentially the same argument should apply to slightly nonneutral 
systems. Because of electrostatic repulsion, any excess charge will aggregate 
within a thin spherical boundary layer. By Newton's theorem such a layer 
does not influence the locally essentially neutral interior, where the above 
line of reasoning applies. 

Expressing ~(e) in terms of the length scale z .... t~inh -(6) of the correlations, 
which for a finite system formally reads 

~6) 3 , q2)1/2 
"~ . . . .  = (eok B T27cR / 3 N 6  (3.2) 

[set n 6 = 2N6/IAI  with IAJ = 4rcR3/3 in (2.2)] yields the relation 

( e )  _ ( 2 N 6 ) 1 / 2  } ( e )  >-> 2 ( e )  
i n h  - -  " c o r r  - -  - c o r r  (3.3) 

Relation (3.3) reveals that, if the guess (3.1) is correct (it is, as will be 
shown), then the inhomogeneity of a finite Coulomb system in thermal 
equilibrium is a collective effect, since it extends far beyond the Debye 
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scale. In this sense it is indeed a plasma phenomenon, according to the 
definition introduced by Langmuir. (38~ More importantly, the inhomo- 
geneity scale is in fact incompatible with the correlation scale as N--* oe. In 
the standard thermodynamic limit, ~ (~ diverges. "~ inh  

The above reasoning suggests that a classical finite Coulomb plasma 
with regularized interactions has some mean-field features in common with 
a classical self-gravitating gas. Of course, the above arguments are far from 
rigorous; in fact, we are far from having proved anything about a com- 
plementary thermodynamic limit. Nevertheless, the results obtained in this 
subsection fit well together; so we shall move on with confidence. In the 
following subsection the analogy between classical Coulomb and Newton 
systems will be based on a firmer ground. Before doing so, however, it is 
appropriate to add the following: 

Warning. It should be observed that from (3.1)-(3.3) it follows that, 
for temperatures above typical ionization temperatures the inhomogeneity 
is so tiny that it is most probably unobservable by any direct experimental 
means. One might therefore be tempted to conjecture that the 
inhomogeneity, and hence any effect associated with it, would be com- 
pletely unimportant for the thermodynamics. This attitude is, however, 
erroneous. It overlooks that the inhomogeneity is rather a qualitative 
indicator that there are some collective interactions at work in a Coulomb 
system which could give rise to so far unknown but measurable 
phenomena. This possibility is worth considering. Apart from that, from an 
academic point of view it is interesting to observe that the inhomogeneity 
is itself a bulk effect, in the sense that all particles of the plasma are 
involved and not merely a small subgroup, for example, particles in a thin 
boundary layer. 

3.2. Variational Approach to the Mean-Field Regime 

The aim now is to verify, in a sense to be made precise below, the 
above estimation that formally the overall mean-field structure of the num- 
ber density of a finite Coulomb gas in equilibrium is the same as that of 
a classical self-gravitating gas. Standard, however nonrigorous, techniques 
of theoretical physics are employed. The idea is to apply to a classical 
Coulomb system the type of variational principle which has already proved 
useful in determining the mean-field structure of a self-gravitating gas in 
thermal equilibrium. Thereby one obtains formally the same equations for 
the mean-field structure of a weakly coupled Coulomb gas as for a classical 
self-gravitating gas. 

It is convenient to treat the gravostatic (=regularized Newton) and 
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the electrostatic (=regularized Coulomb) systems together, specializing to 
each situation at a later stage of the calculations. Let 

a N  2 

H(m= ~ ~m+ ~ V~,~,(lr~-rj[) (3.4) 
i ~  l l <~t <J<~ a N  

be the Hamiltonian of a finite system of a species of classical point particles 
in a container A c ~3. Each species consists of N identical particles. The 
r i e A are the particle coordinates and the pi ~ ~3 are the particle momenta. 
The mass of particle i is mi. The particles interact via conservative, long- 
range, central forces. The potential energy V~,~,(Iri-rj]) between particle i 
of species a and particle j of species c( is assumed to be bounded. By 
I'= ~3~rNxA~rN w e  denote the phase space, and by f(-~) the density of a 
probability measure on F. The system is in thermal contact with a heat 
bath of temperature T. The goal is to estimate the overall structure of the 
particle density in the mean-field regime. 

The basic idea is very simple. It starts from the well-known fact 
'that the canonical probability density f ( N ; c a n )  of the classical canonical 
equilibrium measure, given by 

f(N;can) = (N!~Z) -,  exp( - fill) (3.5) 

with 

Z(A, N, fl) = (N!) -~ freXp(-flH) dr (3.6) 

and fl = (kB T) ~, can be constructed from the Gibbs variational principle, 
which is based on the second law of thermodynamics. Explicitly, f(N;c,n) is 
the unique minimizer of the free-energy functional 

p(U)[f ] = ( H(N) ) + kB T(ln(f(N)/f(oU)N!~') ) (3.7) 

In (3.7), ( - ) = S r - f ( N ) d r  denotes the phase space expectation functional 
taken with Liouville measure (39) dr, and f~o m is some normalizing constant. 
A slightly modified version of the above variational principle applies to the 
mean-field regime. Observe that correlations between the particles play a 
minor role in that regime. In a first approximation correlations might 
therefore be neglected completely for the calculation of the overall equi- 
librium properties, which in fact is a characteristic ingredient of any mean- 
field approximation. This suggests to replace the above variational prin- 
ciple for the construction o f f  (N;can~ by a constrained variational principle 
and to look for the global minimum of (3.7) only on that subspace of the 
probability densities on F which consists of the a-symmetric products of 
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one-particle densities. Here, "e-symmetric" means symmetric under per- 
mutations of the particle indices within species c~. Clearly, the momentum 
part of the canonical equilibrium density is already an e-symmetric product 
density. Thus, it suffices to consider only the corresponding configurational 
free-energy functional F(U)[g],  which reads 

F(N)[g] = ( U (N)) -~ k B T(ln(lAol 2N g(U)) } (3.8) 

where U (u) is the interaction Hamiltonian, defined on the configurational 
subspace f2(N)c F; g is the configurational probability density, and LAoL a 
fixed reference volume. The constrained variational principle leads to a 
coupled system of a integral equations for the configurational one-particle 
densities of the various species. These equations have to be solved together 
with the condition that a solution (-vector) has to be a global minimizer 
of the restriction of (3.8) to the c~-symmetric subspace of the configurational 
product probability densities. 

The constrained variational principle obviously provides us with the 
best upper bound to the canonical free energy that can be obtained by 
means of an uncorrelated probability density. This alone does not guaran- 
tee that the corresponding one-particle density is close to the exact one. 
It should be noted, however, that for the self-gravitating systems the 
constrained variational principle yields precisely the equations which are 
recovered in the classical mean-field limit. (21'22) Hence we should also 
expect the accurate mean-field equations to come out for the more general 
type of systems described by (3.4). As we shall see, the equations obtained 
from this variational principle have all the features of the usual mean-field 
picture. 

Let us now compare the equations obtained from the constrained 
variational principle for a Coulomb system with those obtained for a 
Newton system. It is convenient to derive both sets of equations here. Let 
model system (if) be a system of N~ identical classical particles which 
interact via regularized gravostatic forces. This means a = 1 in (3.4). The 
interaction Hamiltonian of (if) reads 

U~ = Z V~(Iri-- UI) (3.9) 
l <~i<j<~N~r 

with V~ = - G m 2 V <  O, where V> 0 is of positive type (4~ and a regulariza- 
tion of 1/Iri-  rjl. Thus, V~ is a regularization of the Newtonian interaction 
potential between two points, given by 

G m  2 
V~:- - (3.10) rri-rj( 
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As (~) contains only one species, the e-symmetric subspace of the con- 
figurational product densities consists of densities of the form 

N~ 

g(r 1,..., ru~ ) = ~ p(rk) (3.11) 
k = l  

where p is a one-particle probability density on A. The free-energy func- 
tional (3.8) reduces to the functional 

N~(N~2 - 1 ) -~'f " ~ [ P ] -  xA P(r) p(r ') V~c(lr- r'l ) d3r d3r ' 

+ N ~ f l - l f 3  p(r)ln[IA01 p(r)] d3r (3.12) 

The global minimizers of @~ form a subset of the stationary (or critical) 
points of Y~, where the first variation of ~ with respect to p vanishes. 
Thus, one has to find all the solutions of the Euler-Lagrange equation 

exp[-- (N~ - 1) fi(V~ * p)(r)] 
p(r)--~A e x p [ -  (N~ - 1) fl(V~ * p)(r)] d3r (3.13) 

for which (3.12) takes its global minimum. In (3.13), (V~,p) ( r )  is the 
convolution product of V~ and p. 

It should be observed that (3.13) is in fact a mean-field equation. This 
is readily seen by rewriting (3.13) in the familiar form of the well-known 
Boltzmann factor of a gas which is subject to a potential r 

exp[ - f ie ( r ) ]  
p(r) - ~.4 exp[ - fie(r)] d3r (3.14a) 

where the potential r is not arbitrary, but has to be computed self- 
consistently from the equation 

r = (N~ - 1) ~4 p(r') V~(Ir-  r'J) d3r ' (3.14b) 

This is the usual mean-field picture. Thus, we can conclude that in the 
mean-field regime the overall structure of the thermodynamic equilibrium 
of regularized Newton systems is fairly accurately approximated by those 
solutions p(~ for which (3.12) takes its global minimum. 

Remark I. Instead of eliminating ~b in (3.14a) via (3.14b), which 
immediately results in (3.13), one may also eliminate p from (3.14b) via 
(3.14a) to obtain a closed equation for r It is interesting to note that this 
equation for r can alternatively be derived from the configurational 
integral by a method based on Jensen's inequality. (4~) 

Remark 2. Formally, as V~--, V+~ together with the requirement 
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that the normalizing integral ~A e x p [ - - ( N ~ -  1)/~(V~ * p)(r)] d3r remains 
finite, (3.13) becomes the well-known (Lane)  Emden equation of the 
isothermal gas spheres, (7"8) when A is a spherical domain. In addition 
(3.13) has solutions (22t which converge *-weakly to the Dirac delta 
measure as V~-~ Vy. The Dirac measure is in fact the statistical 
mechanics equilibrium measure of exact (i.e., nonregularized ) classical self- 
gravitating matter. Only with regularization there is a small high-tem- 
perature regime where the statistical mechanics equilibrium state is given 
by gaseous solutions of the Emden type. For a thorough discussion of this 
and related points see ref. 22. 

We come now to the consideration of Coulomb systems. Let model 
(g) describe a system of classical particles with regularized electrostatic 
interactions. There are Ne identical positively charged and Ns identical 
negatively charged classical particles, such that the system is totally neutral. 
The interaction Hamiltonian of (~) reads 

Uw = ~ ( - 1 )  '+j Ve(lr , -  rjl) (3.15) 
l ~ i<j<~2Ng 

where Ve = (q2/4rc%) V> 0, with the same V as in V~, is a regularization 
of the Coulomb interaction potential 

q2 1 
V~ - 47z% jr~- rjJ (3.16) 

In (3.15), particles of one species carry an even subscript and particles of 
the other species an odd one. For (g), a = 2; hence, 

Ng 

g(rl,..., r2N~)= l--I p+(r2k) P-(r2k 1) (3.17) 
k = l  

where p_ and/9 + are the one-particle probability densities of the negative 
and positive species. (Positive [negative] particles now carry even [odd] 
subscripts.) The right-hand side of (3.8) becomes the free-energy functional 

Ne(Ne-1) fA  [p+(r) p+(r')+p_(r)p (r')] ~eEP +, P- ] -  2 • 

x Ve([r-r'])d3rd3r' 

- N ~ f  p+(r )p  ( r ' )Ve(Lr- r ' l )d3rd3r  ' 
~A •  

+Neff -1 f4 p+(r)ln[lA0l p+(r)]  d3r 

+ Ne3-1fa p_(r)ln[[Ao[ p_(r)]  d3r (3.18) 



Thermodynamic Limit for Coulomb Mat te r  1171 

The first integral describes the part of the' potential energy which stems 
from the electrostatic interactions of each of the species with itself; the 
second integral is the analog of the first one for the interactions between 
the two species; the last two integrals are the negative configurational 
entropies. The corresponding Euler-Lagrange equations for the stationary 
points of ~ a [ P + ,  P ] read 

e x p [ -  ( N e -  1)ff(V* p + ) ( r ) + N e f f ( V *  p_) ( r ) ]  
p + ( r ) = ~ A e x p [ _ ( N e _ l ) f f ( V , p + ) ( r ) + N e f f ( V , p _ ) ( r ) ] d 3 r  (3.19a) 

e x p [ -  (Ne - 1) ff(g * p_)( r )  + Neff(V �9 p +)(r)]  
p _ ( r ) = S A e x p [ _ ( N e _ l ) f f ( V , p _ ) ( r ) + N e f f ( V , p + ) ( r ) ] d 3 r  (3.19b) 

One has to find those solution pairs [p~/(r), p~)(r)]  of the system of 
Euler-Lagrange equations (3.19a) and (3.19b) for which .~e[P+,P ] 
takes its global minimum. 

l . e m m a  1. If [p(+~176 is a solution pair of the system 
(3.19a) and (3.19b), then p~) ( r )=  p ~ ) ( r ) -  p(~ for all r. 

Proof. It is more convenient to discuss the stationarity properties of 
Ye[P +, P -  ] in terms of p and 7, which are defined by 

p+(r)  + p _ ( r )  
- p ( r )  (3.20) 

2 

p + ( r ) -  p ( r )  
-~(r) (3.21) 

2 

These formulas are readily inverted to yield p + 7 = P + and p - 7  = P - ,  In 
terms of p and 7, the free-energy functional ~e [P  § P - ]  becomes 

~'~ [P, 7] = - Ne f A • A p(r) p(r') V~(lr - r'l) d3r d3r ' 

+ (2Ne - 1 ) Are fA • A 7(r) 7(r') Ve(Ir - r'l) d3r d3r ' 

+ Neff-1 fA (p + o/)(r) lnl-lA0l (p + 7)(r)] d3r 

+Nef f - i rA  (p--7)(r)lni-[Ao[(p-- 7)(r)] d3r (3.22) 

Stationary points of (3.18), i.e., solution pairs [p~( r ) ,  p ~ ( r ) ]  of (3.19a) 
and (3.19b) obviously correspond one-to-one with stationary points 
[-pr176 71~ of (3.22). Now observe that by symmetry of V~ we have 

822/59/5-6-6 
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~ * r ~  = y *  _ e L~,, 7] ~ [p, y]. This immediately implies that stationary points of 
~ * [ P ,  7] must occur pairwise; i.e., if [p(~ 7(~ is a stationary point 
of (3.22), so is [p(~ -y(~ for the same p(O) and y(o). On the other 
hand, since Ve is of positive type, for given p(O) the functional ~ , [ p ( o ) ,  7] 
is strictly convex with respect to variations of 7, which follows from 
Theorem 4 of ref. 21. This implies that, if p(o) belongs to a stationary point 
[p(o), y(o)] of ~ * [ p ,  y], there is one and only one 7 (0) such that [p(O), y(o)] 
is a stationary point. Together with the above result that stationary points 
occur in pairs, this implies 7 (~ = _y(o), which in turn implies 7 (~ = 0 identi- 
cally. This proves the lemma. | 

Lemma 1 states that ~-e[p+, p _ ]  as given in (3.18) can be stationary 
only if the system which is described by the no-correlations approximation 
is locally charge neutral. This thus holds for the global minimum. Hence in 
the no-correlations approximation we recover the fact that there is no 
macroscopic average electric field in equilibrium, which holds for the 
system described by the exact Gibbs measure. Setting p + = p_ = p in (3.18) 
and abbreviating ~ [ p ,  p]  by ~'~e[P] gives the free-energy functional 

•e[p]  = - N e  f 3 x,~ p(r) p(r') V~(Ir-r ' l)  d3r d3r ' 

+ 2Nef l - ' fA  p(r)ln[lAol p(r)] d3r (3.23) 

This free-energy functional is proportional to Ne;  i.e., in this sense -~e[P] 
is extensive. Similarly, the Euler-Lagrange equation for the stationarity of 
~ [ p l  becomes 

exp[fl(Ve * p)(r)]  
p(r) = 5A exp[/?(Ve * p)(r)]  d3r 

(3.24) 

which is independent of Ne. Equation (3.24) can also be obtained directly 
from (3.19a) or (3.19b) by setting p+ = p _ - = p  in either equation. Again, 
those solutions p(~ for which (3.23) takes its global minimum are also 
the global minimizers of (3.18). These are the relevant mean-field densities 
which approximately describe the exact thermodynamic equilibrium state 
of a Coulomb system with regularized interactions. 

It should now be observed that formally the free-energy functional 
(3.23) is the same as (3.12), and the Euler-Lagrange equation (3.24) is for- 
mally the same as (3.13). This was stated at the beginning of this section. 
Obviously, the analogous discussion as given below (3.13) also applies to 
(3.24). That means that (3.24) is a mean-field equation which gives the one- 
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particle density as a Boltzmann factor in the self-consistent mean-field 
potential - ( V ~  �9 p)(r). The meaning of this self-consistent potential is that 
of an attractive (regularized) electrostatic potential which is experienced by 
every particle, independent of the sign of its charge. Although there is no 
total macroscopic electric field, every plasma particle sees the remaining 
plasma as a singly oppositely charged fluid of density p(r). This is precisely 
the picture sketched in the preceding subsection. 

The formal identity between the results obtained in the no-correlations 
approximations (in fact: mean-field approximations) of the Coulomb and 
Newton systems establishes that besides the characteristic scale of the 
correlations, there exists another bulk scale of a Coulomb plasma in the 
mean-field regime, which is precisely ~(~ as given in (3.1). This follows "~inh 

immediately from the fact that (3.13) has inhomogeneous gaseous 
solutions. For spherical domains A these are the above-mentioned 
("regularized") isothermal Emden gas spheres, which are inhomogeneous 
on the scale )(~) given by (2.1). The formal identity between (3.13) and "Vin h 

(3.24) reveals, upon comparing the right sides of both equations, that 
(3.24) has gaseous solutions which are inhomogeneous on the scale ~(~) "~inh �9 

4. T H E  L I M I T  N ~  oo; /~inh=COnSt 

The inhomogeneity scale 2~h of classical Coulomb matter with 
regularized interactions should have associated with it a nontrivial ther- 
modynamic limit where N--, oo and 2inh is fixed. (The index g on N, ,~-inh, 
and 2 .... will be dropped in this section, as no confusion with the respective 
quantities for self-gravitating matter may occur.) In the present section it 
is anticipated that this limit exists, and further that the limit is mean-field. 
For the rigorous construction see ref. 23. 

Consider the expression (3.1) for 2inh. Although (3.1) is strictly valid 
only for spherical domains, one can interpret this formula as characterizing 
the large-scale inhomogeneity also in more general simply connected 
domains A, provided these domains do not deviate too much from a 
spherical domain. Then R is a typical radius. From (3.1) it can now be seen 
that the seemingly simplest way of performing a limit N - ,  0% 2inh = const 
is to put more and more particles of both species into the container A, 
thereby keeping the volume (AI, the temperature T, the charge q, the total 
charge Q ( = 0  here), and the physical constants fixed. The limit is then a 
finite-volume limit without any rescaling of particle quantities. This means 
that more and more particles will be contained in every volume element 
however small without having scaled the two-particle forces to vanish with 
N ~  oo. This is a peculiar limiting procedure. Taking a physical point of 
view, we have to bear in mind that in reality it is impossible to put an 
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arbitrary equal number of positively and negatively charged particles into 
a given finite volume with the energy per particle, etc., being essentially 
fixed. Quantum effects come into play, and gravity would finally spoil the 
extensivity of the energy, the entropy, etc. So, given that the limit N ~ o% 
)~inh=COnSt exists mathematically for classical Coulomb systems with 
regularized interactions, if the particle number in a real system is too large 
for a given volume, the limiting quantities will clearly not describe the 
properties of the real system adequately. This type of problem, however, is 
not only characteristic of the present limiting procedure, but is well known 
also in the context of the standard thermodynamic limit. The standard 
thermodynamic limit is also not realizable by any real physical system, in 
a strict sense, because of gravity. Hence, analogous to the philosophy of 
corresponding states (2) associated with the standard thermodynamic limit, 
the physical meaning of the limit N ~  o% 2inh = const resides for the 
moment on the hope that the convergence to the limiting quantities is fast 
enough. There will then exist a regime of the physical parameters where the 
limiting quantities approximately apply. See also the next section. 

The limiting procedure is of interest from a mathematical standpoint 
as well. Since the two-particle forces do not vanish as N-~ o% there has to 
occur a subtle cancellation of attractive and repulsive terms in order that 
a meaningful limit exists. Since the limit is expected to be mean-field, this 
cancellation has even to go beyond that which gives rise to the standard 
thermodynamic limit. (3'4) Technically this mean-field problem is therefore 
not simply the many-species generalization of the classical inhomogeneous 
mean-field thermodynamic limit for one-component systems with unstable 
interactions, (21'22) where the two-particle forces are scaled to zero in the 
limit such that only the nonsaturated long-range part (i.e., the mean-field 
part) survives. Nevertheless, the following can be proved. 

T h e o r e m  1. Let V e be of positive type. Consider the configura- 
tional equilibrium measure 

#(u)(&o) = e x p [ - 3  21 ~<i<J<2N(-- 1)i+Y Ve(Iri-- rsl)J &o (4.1) 
~A2N exp[ --fl Z1 <.g< j~ : N ( -  1) i+j V e ( L ~ -  ~:jl )] de5 

of a finite system as a measure on the infinite Cartesian product (2 of the  
A of the totally neutral infinite system, whose restriction to A2Nc ~ is 
given by (4.1), with &o the Lebesgue measure on A :~. Let ~/~ denote the 
space of probability measures on A and let Q(d3r) = p(r) d3r s J / '  c J / / b e  
absolutely continuous w.r.t. Lebesgue measure. The corresponding product 
measure on s is denoted by # o = Q | 1 7 4  .... Let Jr c ~ '  denote the 
subset of probabilities Q for which the corresponding density p is a global 
minimizer of the free-energy functional ~ [ p ]  given in (3.23). Then any 
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weak limit point of {/A(N) I N =  1, 2,...} on 12 is given by a linear convex 
superposition of those /~  for which ~o ~ Jr 

Remark. It should be observed that any global minimizer p(O) of 
~ [ p ]  is independent of N. It is thus also a global minimizer of the func- 
tional of the free energy per particle (2N) - 1 ~ [p ] = fe  [P ]; explicitly, 

fe[P] = - (1/2)JA ~ A p(r) p(r') Ve(jr - r'l) d3r d3r ' 

+ ]3-~ IA p(r)ln[IAol p(r)] d3r (4.2) 

The proof of Theorem 1 requires, in a sense, a kind of hybridization 
of techniques developed originally for proving the standard thermodynamic 
limit for all the correlation functions of classical regularized Coulomb 
matter (4) on one side and for proving the inhomogeneous mean-field 
thermodynamic limit for classical matter with unstable regularized inter- 
actions (21) on the other. We note that A is compact and so is 12 (in the 
product topology). Any e-symmetric probability measure #~N) on A 2N (e.g., 
a canonical equilibrium measure of a finite system) can naturally be inter- 
preted as an a-symmetric probability measure on 12 such that its restriction 
to A2N=12 is just /t (N). By the compactness of 12 there exist weak limit 
points of {p(N)} as N(k)~oo with k---, ~ in the space of e-symmetric 
probability measures on 12. The necessary regularity properties of all the 
marginal measures kt (N~ are implied by the regularity properties required n + , n _  

for Ve and are proved with the aid of the functional Fourier transforma- 
tion (4'39'42) (which was denoted the "Siegert transformation" in ref. 43). 
Subadditivity and weak upper semicontinuity of entropy imply then that 
the limit N ~  ~ of the free energy per particle [see (4.3) below] exists and 
that it coincides with the mean free energy of any weak limit point of 
{kt(N)jN= 1, 2,...}. The latter quantity in turn equals the infimum of the 
mean free-energy functional defined on ~ ,  the space of c~-symmetric prob- 
ability measures on 12. The mean entropy is affine, (44) and so is the mean 
free energy. Any e-symmetric probability measure/~ on 12 can be written as 
a convex superposition of the extreme points of ~ ,  which is essentially an 
application of the Krein-Milman theorem (see refs. 1 and 45 for a general 
discussion). This implies that the mean free energy of # can be written as 
the same convex superposition of the free energies of the extreme points. 
The extreme points of ~ turn out to be the product measures of the form 
(Q + | Q + | "")  | (0- | •- | ' " ) ,  where the first factor contains all coor- 
dinates of the positive species and the second all coordinates of the 
negative species. This is proved by directly generalizing the proof of the 
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representation theorem for permutation-invariant measures (46) to the 
a-symmetric case. Finally, by Lemma 1 only those extreme points are 
involved for which 0 + = 0 - .  For details of the proof we refer to ref. 23. 

The'following is immediate. 

Corollary 1. For all fl for which the global minimum of ~o[p ]  
(equivalently: f e [ P ] )  is unique there exists a unique limit # of {#(N) IN= 
1, 2,...}, which is a product measure. The length scale 2inh given in (3.1) is 
kept fixed along the sequence N--* oo. 

By Theorem 1 the limit state is generally a superposition of mean-field 
states, i.e., a mixed state. It is of interest to know whether there are pure 
states. Corollary 1 tells us that if the global minimum of F~[p] is unique, 
then the complementary thermodynamic equilibrium measure is correlation 
free, and thus a mean-field or pure state. The following theorem says that 
there exists a high-temperature regime of pure states. 

Theorem 2. Let (1/2)kBT> V~(O). Then the sequence {#(m]N= 
1, 2,...} converges to a unique product measure #. 

Proof. By Theorem 3 of ref. 21 the solution of (3.24) is unique for 
/ ~ < l / [ 2 s u p r ~ +  V~,(r)]. The potential V~o is of positive type. Hence (4~ 
supr ~ ~. V~(r)= Vg(0). Now Corollary 1 applies. II 

The above theorems establish that the limit N-~ v% )~inh = const exists 
and also that this limit is mean-field. From now on we may consider that 
limit as a nontrivial complementary thermodynamic limit, with respect to 
the standard thermodynamic limit, of classical Coulomb matter with 
regularized interactions. 

The above considerations are somewhat technical, but some weaker 
results about the mean extensive quantities can be obtained by much sim- 
pler arguments. First of all, the existence of convergent subsequences of the 
mean extensive quantities is guaranteed by the Bolzano-Weierstrass 
theorem and the following inequalities. The canonical configuration free 
energy per particle, given by 

(2N)-1 v(U . . . .  ) =  -(2N/~) -1 In Q(N) (4.3) 

with 

Q(N)=IAo] 2NfA2uexpI--[I ~ (-1)i+JVE(,ri-rjl)ld~ (4.4) 
l<.i<j<~2N 

being the configurational integral, is bounded via 

- - (1 /2)  Vr ~< - ( 2 N f l )  -1 In Q(N) fl-i ln(iAol/lA]) 
<~ - (1 /2)hAl-2  ( Vs(Ir-r'l)d3rd3r ' (4.5) 

oA xA 
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The first inequality was proved in ref. 27. The second inequality is a conse- 
quence of the Gibbs inequality and obtains by choosing a homogeneous 
configurational trial density. The potential energy per particle is bounded 
analogously by 

--(1/2) Vg(O)<~(2N)-~E(N)<~ -(1/2)IAI-2~ V~(tr-r' l)d3rd3r ' 
OA xA 

(4.6) 

The first inequality is again due to ref. 27. The second one obtains from 
noting that ~E(N)/~fl < 0, which is well known from statistical mechanics, 
and then computing lim~,.oE(U~(fl), which is just the right side of 
(4.6). Clearly, from the identity F(N)=E(N~--TS(N) we obtain also 
N-independent upper and lower bounds for the entropy per particle 
(2N) -1 S (u) upon combining (4.5) and (4.6). The upper bound can, 
however, be improved by computing the maximum of - ( ln([Ao[ 2N g(U))) 
in the space of probability measures with density g. Hence 

~< (2N) -~ Ts(N) <~ --fl-~ ln([Aol/[A[) (4.7) 

Although not sufficient to prove a limit, in analogy to the known situations 
encountered in the problem of constructing thermodynamic limits, the 
existence of weak limit points (i.e., convergent subsequcnces) as implied by 
the bounds (4.5)-(4.7) for the mean extensive quantities can be interpreted 
as good indicator that a meaningful limit exists for almost all ft. 

We also observe that each p(X) is the global minimizer of the free- 
energy functional (3.8) for the finite-N case. Hence, it is natural to 
expect that any weak limit point of {/~(m} is a global minimizer of the 
corresponding expression of the free-energy functional per particle in the 
infinite case. 

Finally, one may also guess that the sequence N--* 0% 2~h fixed 
amounts to a mean-field limit from the following observation. The correla- 
tion length 2 .... shrinks to 0 as N ~  0% 2inh fixed, which follows from (3.3). 

3 So one might be tempted to argue that the volume 2~or~ within which par- 
ticles are correlated with a given particle shrinks to zero. The number of 
particles v with which a given particle is correlated is then roughly given 
by the product of 23orr with the average density 2N/IA[ and is given by 

v = (2N)-2/2 (23nh/[Al) (4.8) 
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which vanishes as N--, oo. There are then no particles with which a given 
particle is correlated. This mean-field regime is different from the usual 
Debye-Hiickel mean-field regime, (47) where the number of correlated par- 
ticles goes to infinity, but with the amplitude of the correlations shrinking 
rapidly to zero. 

It should be noted that a similar type of argument goes through in 
d >  3 dimensions, but not for d <  3. (I thank B. Jancovici for drawing my 
attention to this point.) This clearly shows a weakness of this simple argu- 
ment, since the proof of Theorem 1 seems not to involve the dimension d 
of space. Strictly speaking, there is also a little cheating in the argument 
because (3.2) applies as measure of the correlation length only if the inter- 
actions are dominated by the long-range electrostatic part, and even that 
has been proved only for the high-temperature, low-density regime. (35'48~ 
The short-range interactions (i.e., the smoothing) come(s) into play in 
regions of space where the density becomes large, i.e., formally if N ~ oo 
anyway, and physically also at low temperatures even if the formal average 
density 2N/[AI is small. On the other hand, it is reasonable to expect the 
regularized short-range part of the interactions to be harmless, such that 
the argument essentially applies. The correlation length, however, will not 
be given exactly by the Debye formula (3.2), but by some "modified Debye 
formula." In that sense, with the appropriate caution in mind, one could 
expect already from the above simple arguments that in the limit N ~ o% 
)~inh fixed, all correlations will be perfectly averaged out, except at points of 
phase transition. 

5. APPLICATION TO PHYSICAL M A T T E R  

It is appropriate first to discuss the system of equations [-(3.23), 
(3.24)], which, by Theorem 1, govern the mean-field thermodynamic limit, 
and then to inquire into the range of physical parameter values where the 
results might apply.. To facilitate the discussion, some notation will be 
introduced. A formal ionization temperature T* may be defined by 

(1/2) kB T* = Ve(0) (5.1) 

This is motivated by the fact that V e is a regularized Coulomb potential, 
of positive type; hence, it vanishes ~ r-1 with r ~ 0% but is bounded with 
supr Vr Thus, (1/2)kaT* is the amount of energy necessary 
to separate two initially tightly bound particles. It is also convenient to 
introduce a formal classical "atomic" radius ao by 

(1/2) kn T* = q2/4rc~oao (5.2) 
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The notion of atomic radius corresponds to the picture that physically two- 
particle bound states will have a size roughly given by ao defined via (5.2). 
In this classical picture ao may also be interpreted as an effective cutoff 
length in the sense that for r > ao the potential Ve(r) is essentially identical 
to the exact Coulomb potential Ve(r), but for r < ao is roughly given by 
Ve(r) ~ Ve(O) ~ V~e(ao). Of course, there is no need to stick to applications 
to systems consisting of classical elementary particles. We may feel free to 
choose ao of rather macroscopic than atomic size. This applies to so-called 
grain plasmas, which occur in space. 

We may like to profit from some results proved in ref. 22; hence, let us 
add the requirement that Ve(r) is monotonically decreasing and strictly 
smaller than V~(r) for all r. For simplicity let A be a ball B R of radius 
R~> ao. 

The following is a list of important properties of the set of equations 
[(3.23), (3.24)], respectively [(4.2), (3.24)]: 

1. Any local minimizer of the free-energy functional ~Je[P] (equiva- 
lently, fe[P]) is spherically symmetric. 

2. For temperatures T >  T* there exists a unique solution p of (3.24) 
(cf. Theorem 2). This solution is thus the global minimizer of (3.23)/(4.2) 
and describes a pure phase with (formal) inhomogeneity scale 2in h given in 
(3.1). For all practical purposes the solution can, however, be treated as 
being homogeneous because T/T* > 1 and R/ao >> 1 imply 

= - -  - -  , > 1  ( 5 . 3 )  
R - ~  ao/ 

We shall therefore speak of "quasihomogeneity." 

3. At a temperature T~ < T* there exist (at least) two different global 
minimizers offe[p]. For T =  Tt the sequence {p(m} of the measures (4.1) 
therefore has a convex continuum of weak limit points. Each weak limit 
point can be expressed as a convex superposition of the extreme points of 
that continuum. This corresponds to the existence of a first-order phase 
transition. If T is decreased from T >  T~ to T <  T~, at T~ the global mini- 
mizer of (3.23) collapses from a quasihomogeneous state to a strongly 
inhomogeneous state. The phase transition is connected with a jump in the 
energy and entropy of the system, and with a jump in the pressure at the 
boundary. In this sense it is an anomalous first-order transition. For the 
transition temperature one finds the estimate 

2Ve(0) > k~ 7"~ > Ve(2ao)/6 ln(R/ao) (5.4) 

for ao/R small enough. 
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Remark 1. The first inequality in (5.4) is exact; the second is 
asymptotically exact as a0--*0 +. [Recall that V~(0)--* oo as %--*0 + by 
construction.] The second inequality is, however, not optimal. 

Remark 2. By Theorem 4.4 of ref. 4, a phase transition does not 
occur in the standard thermodynamic limit for two-component Coulomb 
systems with regularized classical interactions. 

4. The phase transition is connected with the existence of metastable 
solutions of (3.24) below T I. A metastable solution is a local, but not 
global minimizer o f f r  ]. The branch of the metastable solutions connects 
differentiably to the high-temperature uniqueness regime. These metastable 
solutions all are inhomogeneous on the scale )[inh' As the temperature 
decreases, the inhomogeneity becomes more and more pronounced, 
although not as pronounced as for the collapsed solutions. There exists a 
critical temperature T** ~ (3/2)(ao/R) T* < T* below which the meta- 
stable equilibria cease to exist. In particular, T ~  T** m e a n s  /~inh~,~,R, 
which is the analog of the Jeans criterion for self-gravitating gases. 

The properties listed in 1-4 are proved in ref. 22, which gives further 
details; however, there the interpretation of the corresponding formulas 
was given for self-gravitating systems, as ref. 22 only addresses such 
systems. 

We come now to the possible applications to physical matter. The 
limit N--* oo, 21~u fixed cannot be realized exactly by a physical system, but 
only approximately. Even then it is only valid for certain ranges of the 
parameter values characterizing Coulomb systems. First of all, we can 
distinguish between two different kinds of solutions of (3.24). On one 
hand, there are the globally stable quasihomogeneous solutions above the 
ionization temperature T*, which connect differentiably to the regime 
of metastable solutions which extends beyond T;. Their structure is essen- 
tially determined by the long-range part of the Coulomb interactions. On 
the other hand, there are the collapsed solutions, which are globally stable 
below T~. Their structure is determined essentially by the short-range 
regularization of the interactions. Hence we must not take the details of the 
collapsed solutions too seriously, although the mere existence of these solu- 
tions is of course important. In the following we shall therefore concentrate 
only on the quasihomogeneous and on the metastable Emden-type 
solutions. 

To estimate the range of the physical parameters where these limit 
solutions apply, we have to consider the relevant smallness parameters of 
the problem. The complementary thermodynamic limit is mean-field with 
the formal condition that the number of correlated particles is small. As we 
do not have the exact expression for this smallness parameter, we take 
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the number of particles v in the Debye sphere (see the discussion in the 
preceding section). We are also working in a classical picture; hence, the 
ratio of the volume where thermal quantum effects play a role to the total 
volume must be small. Finally, there is the smoothing length ao, which 
in the elementary-particle plasma approximately stands for the size that 
bound states would have. In the classical grain plasma it stands for the 
size of the particles. The role played by ao also depends on whether we are 
sufficiently far above or below T*. 

Let us first consider elementary-particle plasmas. Sufficiently far above 
the ionization temperature we need not take into account the role of ao as 
a measure of the size of bound states. Physically this means that the 
influence of bound states is small for T >  T*. This is also reflected in the 
fact that the equilibrium states in the uniqueness regime T >  T* (see point 
2 above) are essentially independent of the value of a0, as long as this value 
is small. So the remaining conditions come from the requirement of the 
classical mean-field regime. With the abbreviations T / T * = O  and 
2N(ao/R) 3 = 7, the mean-field condition v ~ 1 yields 

A O 3/2 7 - 1/2 ,~ ] ( 5 . 5 )  

where A is a numerical constant. For  q = e (elementary charge) we have 
A ~ 1.2 x 10 -1. We see that for O > 1, condition (5.5) is fulfilled only in the 
ultrahigh-density regime 7v2> 1. Now the condition that the relative 
thermal de Broglie volume be small reads 

BO-3/2 7 ~ 1 (5.6) 

For  the numerical factor one gets B ~ 2 . 2  x 10 -2 upon inserting the elec- 
tron mass in the expression for the thermal de Broglie wavelength and the 
Bohr radius for ao. Note that ao comes in through the definition of O. 
From these crude estimates we see that, for O > 1, the simultaneous fulfill- 
ment of both conditions (5.5) and (5.6) cannot be achieved satisfactorily. A 
satisfactory treatment requires the use of quantum mechanics. Clearly, it 
would be interesting to see whether for some O > 1 the quantum mechani- 
cal high-density regime also becomes mean-field. 

For  temperatures sufficiently far below T* the situation is more 
promising, although now we have to take into account that the interesting 
solutions are only metastable. In the classical model this means that small 
disturbances would initiate the collapse to states determined by the short- 
range regularized part of the interactions. An intuitive way to keep the 
influence of the short-range part small at these low temperatures is to 
require that the gas parameter 7 now also must be small. So y ,~ 1 together 
with (5.5) and (5.6) must be required. This is indeed possible to achieve. 
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For instance, let O=0.1  and 7=0.01; then the left side (LS) of (5.5) is 
~0.03 and LS(5.6)~0.02. Let O=0.01 and ~/=10-3; then LS(5.5)~ 
3 x 10 .3 and LS(5.6) ~ 0.05. These two examples show that sufficiently far 
below T* the classical mean-field limit presumably applies. It predicts 
the existence of a regime of low-density, metastable, mean-field plasma 
equilibria. 

Let us now come to grain plasmas. Here the particles are of macro- 
scopic size ao. This time we therefore have to require the condition 7 ~ 1 
for all temperatures. That means that condition (5.5) is violated above T*; 
hence the mean-field limit does not apply there. However, sufficiently far 
below T*, i.e., in the metastable regime, there are now fairly good mean- 
field conditions. For these very massive particles the thermal de Broglie 
wavelength is so small that condition (5.6) can be dropped. (The numerical 
factor B will now be much smaller than in the elementary-particle case.) 
The remaining mean-field condition (5.5) can be fulfilled for O ~ 1 together 
with 7 ~ 1. From this one may conjecture that the mean-field limit can 
approximately be realized in the form of metastable grain plasma states. 

It remains to consider the intermediate-temperature regime, i.e., 
T ~  T*. As the temperature is not high enough, we should keep the condi- 
tion 7 ~ 1, But ~ ~ 1 together with (5.5) is impossible for O ~ 1, although 
(5.6) still could be achieved. So roughly at the formal ionization tem- 
perature T* the mean-field condition (5.5) becomes violated if we demand 
that the particles interact essentially by the Coulomb part of the inter- 
actions and also that quantum effects are small. It is interesting that in the 
complementary thermodynamic limit a phase transition occurs precisely at 
a temperature T, somewhat below T*. 

It should be observed that the phase transition describes an implosion 
or explosion, respectively, of the system as a whole. There is no formation 
or dissociation of bound two-particle states! This is presumably a conse- 
quence of the high-density limit, where arbitrarily many particles are 
squeezed into the "natural" volume an isolated bound-particle state would 
have, such that these states lose their meaning. Nevertheless there are some 
implications for dilute physical systems. In a dilute metastable plasma 
phase below T~ there should be a strong affinity of the plasma to condense, 
i.e., collapse as a whole. The mechanism that drives such a phenomenon is 
the residual or collective electrostatic attraction described in Section 3. A 
collapse will happen as soon as suitable fluctuations are available. In reality 
such a collapse of a dilute physical system will lead to an increase of the 
central density, which at one point would most likely initiate the formation 
of atoms, or of larger aggregates of bound matter. One can conceive that 
such a collective collapse mechanism is perhaps at work in certain grain 
plasmas in space. It might be potentially important for the creation of very 
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small celestial bodies. It should be observed that from the isomorphism 
established here between classical Coulomb and Newton gases it follows 
that in dilute, overall neutral systems of less than ~103~ massive 
(~103a.u.)  charged particles the Coulomb clustering in fact dominates 
over gravitational clustering. 

6. C O N C L U D I N G  R E M A R K S  

We have seen that both the standard thermodynamic limit, which is 
usually taken to define the thermodynamics of systems with stable interac- 
tions, and the inhomogeneous mean-field thermodynamic limit, which is 
usually taken to define the thermodynamics of systems with unstable inter- 
actions, can be treated on an equal footing. The basic idea is to charac- 
terize a limit by means of some generic structural length scale which is 
inherent in the physical situation under consideration and which serves as 
an invariant as N ~  oe. This method of characterization of a ther- 
modynamic limit turns out to yield more than merely an umbrella for the 
two known types of limit. The major conceptual spinoff is the notion 
of complementary thermodynamic limits for classical two-component 
Coulomb systems with regularized interactions. As found in Section 3, 
these systems possess (at least) two characteristic structural length scales, 
(3.1) for the one-particle density and (3.2) for the higher correlation func- 
tions, which are incompatible in any limit where N ~  oc. Either length 
scale can be taken as a characteristic invariant for a thermodynamic limit 
sequence where N ~  oe. Choosing the correlation length 2 .... (the 
Debye screening length) as invariant, the corresponding thermodynamic 
limit N--* o0, 2 .... fixed of the appropriately normalized Gibbs measures 
and of the mean extensive quantities turns out to be the well-known 
standard thermodynamic limit (3'4~ (infinite-volume limit). Choosing the 
inhomogeneity scale 2i~h of the one-particle density as invariant, the corres- 
ponding thermodynamic limit N ~  0% 2i~ h fixed of the Gibbs probability 
measures and of the mean extensive quantities turns out to be an 
inhomogeneous mean-field thermodynamic limit in a fixed volume (Sec- 
tion 4 and ref. 23). In particular, as new phenomena in classical two-com- 
ponent Coulomb systems we find an anomalous first-order phase transition 
and a metastable plasma phase in the inhomogeneous mean-field ther- 
modynamic limit (Section 5). Both phenomena do not occur (4) in the 
standard thermodynamic limit. So at least for these idealized systems one 
may say that the standard thermodynamic limit is incomplete, since it does 
not predict all bulk properties. The same conclusion holds of course for the 
inhomogeneous mean-field thermodynamic limit. In this sense it is 
suggestive to postulate that equilibrium thermodynamics of two-compo- 
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nent classical Coulomb matter is to be defined (at least) in terms of two 
nontrivial complementary thermodynamic limits. 

This shows that the relation between equilibrium thermodynamics and 
statistical mechanics is presumably more subtle than is expressed by the 
short-hand "thermodynamics = statistical mechanics in the standard ther- 
modynamic limit," which is usually assumed to apply to systems for which 
the standard thermodynamic limit exists. (In this context, see also ref. 49.) 
One might need several different complementary limits to define the ther- 
modynamics of one and the same system. The systems considered in this 
paper are of course very idealized, but it seems promising to invest future 
effort to see whether our findings carry over at least to a more realistic 
quantum mechanical treatment of the physical matter system. This means 
proving a corresponding mean-field thermodynamic limit for two- 
component fermion systems with exact Coulomb interactions. 

From a mathematical technical point of view the inhomogeneous 
mean-field thermodynamic limit for two-component Coulomb matter is, in 
a sense, the analog but not a mere many-species generalization of the 
mean-field thermodynamic limit for one-component systems with unstable 
interactions. It should be noted that the Hamiltonian of classical two-com- 
ponent Coulomb matter with regularized interactions is stable. (27) This 
requires several new technical steps for proving the mean-field limit, as 
compared to the technique of proving the corresponding limit for classical 
unstable systems. A similar remark applies to quantum systems. 

A by-result that is particularly interesting in itself is that the equations 
which govern the classical two-component Coulomb mean-field limit (Sec- 
tion 4) are formally identical to the mean-field equations of classical self- 
gravitating, one-component systems with regularized interactions/21'22) 
Hence the nature of the first-order phase transitions in both types of 
systems is essentially the same. Assuming this analogy to hold in the quan- 
tum case, one can indeed easily write down the corresponding formal (!) 
Thomas-Fermi equations for two-component fermion systems with 
Coulomb interactions. These equations show the same phase transition as 
gravitating fermions (1~ do. However, writing down the equations is one 
thing, proving them is another. 

The two-component character of the Coulomb system seems to be 
crucial for this analogy between Coulomb and Newton systems. The fact 
that the Coulomb and Newton forces are both r -2 alone does not imply 
a general many-body isomorphism between Coulomb and Newton systems. 
As pointed out by the referees, the corresponding finite-temperature 
Thomas-Fermi limit of a one-component fermion gas in a fixed Coulombic 
background yields a unique equilibrium state (15-17) (see also footnote 13 of 
ref. 10); hence there is no phase transition in these systems. Although there 
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is a phase transition in the mean-field thermodynamic limit of Bose 
jellium (5~ (also a one-component Coulomb system in a fixed background), 
this phase transition is a modified Bose condensation, i.e., of a rather 
different nature. 

The above results suggest that the various ensembles might not be 
equivalent for the Coulomb mean-field limit, which is known to hold for 
the gravitating systems, (~3'51) and which might be a general feature of non- 
standard thermodynamic limits. (52) 

In the first place the results presented in the present paper are of a 
conceptual nature. The application to physical matter is tempting, but has 
to be handled with care. Some rather crude estimates (Section 5) reveal 
that the classical metastable plasma phase could be present in physical 
matter. The verification of a metastable phase of massive grain plasmas by 
means of computer simulations might be possible. Here the application to 
space plasmas is of value. The verification of a metastable plasma phase 
below the ionization temperature would also mean an indirect "verifica- 
tion" that some first-order phase transition would be present in physical 
Coulomb matter. The collective mechanism responsible for the phase 
transition is presumably also at work in certain dilute space plasmas. 
Nevertheless, the estimates in Section 5 are rather heuristic than exact, and 
therefore far from final. Clearly, with a view toward applications to physi- 
cal matter, the results of an infinite-density limit within the framework of 
classical statistical mechanics can only be considered as preliminary. Any 
justification has to come from a quantum mechanical treatment, perhaps 
even from a quantum field approach. 
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